製品がカートに追加されました

λ/4 アクロマティック広帯域波長板 12.7mm 340-560nm

アクロマティック波長板 (位相差板)

×
商品コード #39-024 お問い合わせ
×
Quantity Selector - Use the plus and minus buttons to adjust the quantity. +
¥105,500
数量 1-5
¥105,500
数量 6+
¥89,750
クイック見積り
見積依頼する
製品情報ダウンロード
構造:
Air Spaced

概要

タイプ:
Achromatic Waveplate

物理的および機械的特性

有効径 CA (mm):
>8.0
直径 (mm):
12.70
全厚 (mm):
6.00 ±0.2
寸法公差 (mm):
+0/-0.25
構造:
Crystalline
平行度 (秒):
<10
ハウジング公差 (mm):
+0/-0.25

光学的特性

コーティング:
Ravg <0.75% @ 340 - 560nm
基板: Many glass manufacturers offer the same material characteristics under different trade names. Learn More
Crystal Quartz and MgF2
リタデーション:
λ/4
表面品質 (キズ-ブツ):
40-20
透過波面精度, P-V:
<λ/4 @ 632nm
リタデーション公差:
λ/100 @ 20°C
コーティングスペック:
Ravg <0.75% @ 340 - 560nm
波長範囲 (nm):
340 - 560
損傷閾値, 設計上: Damage threshold for optical components varies by substrate material and coating. Click here to learn more about this specification.
>5 J/cm2 @ 1064nm, 10ns, 10Hz

法規制対応状況

RoHS 2015/863:
適合証明書:
Reach 240:

製品群全体の紹介

  • 複数の波長域をラインナップ
  • 広い波長域にわたりフラットな特性
  • λ/4 とλ/2 のリタデーション
  • 黒アルマイト仕上げの金枠に固定

アクロマティック波長板 (位相差板) は、使用する光の波長に依存せず一定の位相シフトを実現します。この波長非依存性は、2種類の異なる結晶材料を用いることで実現されます。入射光の波長が変化しても、各結晶毎に生じる位相シフト量が互いを相殺するため、結果的に波長依存性がなくなります。アクロマティック波長板 (位相差板) のフラットな特性は、チューナブルレーザーや多波長レーザーシステム、および他の広帯域波長光源との使用に理想的です。 

0°の入射角で用いるためにデザインされ、入射角が±3°ずれた場合でも位相ずれは1% 未満に収まります。23mmの開口径を持つ波長板は、2種類の結晶材料を接着で貼り合わせています。どのアクロマティック波長板 (位相差板) も、高速軸 (進相軸) を示すマーキングが付いた、黒アルマイト仕上げの金枠内に固定されます。

Filter

偏光入門(偏光板の原理と仕組み)

偏光板は、特定の偏光を選別するために使用されます。ここでは偏光板(ポラライザー)を理解する際に重要な偏光の原理と仕組みから解説します。

今すぐ見る

Laser-Cut Polymer Polarizer and Retarder Quote Tool

Polymer Polarizers and Retarders

Polymer polarizers and retarders, consisting of sheets of polyvinyl alcohol and TAC cellulose triacetate, alter the polarization of light.

今すぐ見る

Polarizer Selection Guide

Edmund Optics' Polarizer Selection Guide refines your search for a specific type of polarizer.

今すぐ見る

波長板と位相差板の理解

波長板と位相差板の用語、仕様、製作、構造。及び、正しい波長板の選定やアプリケーション事例について。位相差板としても知られる波長板は、光を透過し、ビームを減衰、偏位、あるいは変位させることなく、その偏光状態を修正します。波長板は、偏光の一つの成分をそれが直交する成分に対して位相を遅らせる (遅延させる) ことによって偏光状態を変化させます。

今すぐ見る

How Do 3D Movies Work? Polarization

Optical Engineer Katie Schwertz explains how 3D movies work because of polarization in a kid-friendly way.

今すぐ見る

Polarization Overview - Part 1: Polarization Basics

Polarizers are optical components designed to filter, modify, or analyze the various polarization states of light.

今すぐ見る

Polarization Overview - Part 2: Waveplates & Retarders (Advanced)

Waveplates and retarders are optical components designed to transmit light while modifying its polarization state without attenuating, deviating, or displacing the beam.

今すぐ見る

You offer many types of polarizers. What are some key benefits to help me decide which is best for my application?

Are the polarizers shipped with a protective film?

What is the difference between s- and p-polarization states?

What are the meanings for the different terms used for polarizers?

How can I tell what the polarization axis is for a linear polarizer?

When you list the average transmission of a polarizer, what is the difference between single, parallel, and crossed?

I have a linear polarizer glass filter and would like to create circularly polarized light. What type of optics do I need for this?

What is the maximum amount of light a polarizer can transmit?

Does the circular polarizer material have to face a particular direction?

What is the fast and slow axis of a retarder and how do they differ?

How can I find the fast and slow axes of a retarder?

What is the difference between multiple and zero-order retarders and when should I pick one over the other?

How can I determine if a retarder is quarter or half wave?

Can I adapt a retarder for use with a specific wavelength other than the design wavelength?

What is the benefit of polymer retarders?

Analyzer

Birefringence

Circular Polarizer

Polarization

Polarizer

Polarizing Efficiency

P-Polarization

Retardance

Retarder (Waveplate)

S-Polarization

Unpolarized

Wire Grid Polarizer

Successful Light Polarization Techniques

Are you looking for a solution to common imaging problems? Discover different polarization techniques to improve your image at Edmund Optics.

今すぐ見る

Polarization Directed Flat Lenses Product Review

Polarization Directed Flat Lenses, which are formed with polymerized liquid crystal thin-film, create a focal length that is dependent on polarization state.

今すぐ見る

Polarizers Review

Polarizers are used in a wide range of imaging and research and development applications.

今すぐ見る

Does the polarization of light change after reflecting off a mirror?

Do diffusers affect the polarization of light?

Does the polarization of light change when it passes through a beamsplitter?

I would like to split light from a circularly polarized laser source into two beams. What happens when it passes through a cube beamsplitter – both non-polarizing and polarizing?

Does light entering a multimode fiber undergo a polarization change during propagation through the fiber? If so, can the emerging light be linearly polarized by placing a polarizer at the fiber’s output end?

Why does the polarization of a laser matter?

The polarization state of a laser source is important for many different applications.

今すぐ見る

Extinction Ratio

Non-Polarizing Beamsplitter

Polarizing Beamsplitter

Optical Microscopy Application: Differential Interference Contrast

Differential interference contrast (DIC) is one of the polarization techniques that can be used in optical microscopy. Learn about this technique at Edmund Optics.

今すぐ見る

Laser Polarization: The Importance of Polarization in Laser Applications

Understanding the polarization of laser light is critical for many applications, as polarization impacts reflectance, focusing the beam, and other key behaviors.

今すぐ見る
 
販売や技術サポート
 
もしくは 現地オフィス一覧をご覧ください
簡単便利な
クイック見積りツール
商品コードを入力して開始しましょう